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Abstract-This paper reports an analytical and experimental study on ablative melting of a solid cylinder 
perpendicularly pressed against a stationary heated surface. An explicit analytic solution is found for the 
rate of ablation in terms of temperature difference and pressure applied and of geometrical as well as 
physical properties of the solid and liquid. Data obtained in a limited number of rather crude experiments 
with rods of melting solids (ice, paraffin) and with rods of wood under flash pyrolysis conditions show a 
fair agreement with the predictions of the theoretical study thus confirming the “fusion model” of flash 

pyrolysis of wood in ablation regime. 

INTRODUCTION 

WITHIN the frame of a research program on the possi- 
bilities of upgrading the energy contained in biomass 
by thermal processes [l] the flash pyrolysis of wood 
has been studied by direct observation of the rate of 
ablation of a wood rod in contact with a hot surface 
[2]. The experiments have been carried out with cyl- 
indrical rods of beechwood (diameters from 2-l 0 mm) 
applied vertically to the upper horizontal surface of a 
spinning steel disc under known and variable pres- 
sures (0.1-3.5 MPa). The disc was heated from below 
by four gas burners to maintain surface temperatures 
on the disc constant (in the range from 773 to 1173 K). 
To prevent inflammation of the liquid and gaseous 
products a jet of argon was directed towards the con- 
tact surface. Under these conditions the rate of 
ablation, i.e. the velocity of consumption of the wood 
rods was found to be directly proportional to the 
wall temperature and to the pressure applied. For 
sufficiently high rotational velocities of the disc (> 1.5 
m ss’ at the position of the rod, about 25 mm from 
the axis of the disc) neither the disc velocity nor the 
diameter of the rods had any significant intluence on 
the rate of ablation [2]. 

Later these experiments on the spinning disc have 
been repeated with melting solids, such as ice, paraffin, 
lead and Rilsan [3]. The results were similar in all 
these cases, only the influence of pressure applied on 
the rods was found to be lower than for wood. The 
ablation velocity (a) was found to be proportional to 
the pressure (p) to a power of F with an exponent F 

depending on the substance (F x 0.04 for ice, 0.3 for 

paraffin, 0.7 for lead, 0.8 for Rilsan and % 1.0 for 
wood) 

u “PF. 

The reasons for this dependency have not yet been 
fully understood. 

From these experiments, it was concluded that the 
rate was controlled by heat transfer through a thin 
layer of liquid products. Flash pyrolysis of wood 
could then be treated, at least to a first approximation 
as a simple fusion process with a “temperature of 
fusion” of wood of 739 K. 

In case of a stationary heated wall the exponent F 

was found to be -0.25 for all melting substances and 
also for the flash pyrolysis of wood. 

In the following we present a theoretical treatment 
for the case of ablative melting of a cylindrical rod on 
a fixed heated wall. The results from this theory will 
be compared with data obtained in a number of experi- 
ments with rods of ice and paraffin as well as wood 
on a stationary heated surface. 

THEORY 

The starting point of our theoretical treatment is the 
situation schematically shown in Fig. 1. A cylindrical 
solid with a diameter 2R and a length much greater 
than 2R is continuously pressed against a horizontal 
wall maintained at a temperature T, above the tem- 
perature of fusion Tf of the solid. In steady state a 
liquid layer of thickness s will be formed with a radial 
flow of liquid. For creeping flow, i.e. low Reynolds 
numbers the inertial forces can be neglected and it can 
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NOMENCLATURE 

C, specific heat capacity at constant VZ axial component of liquid velocity 
pressure (J kg - ’ K - ‘) (ms-‘) 

F exponent o* characteristic velocity [ZJ* = (x,/R)] 

9 gra~tat~onal acceleration (m s-3 (ms-‘) 
h heat transfer coefficient fw m -* K -I) V reduced velocity [I/ = @,/p,)(v/v*)] 
H specific enthalpy (J kg-‘) Y variable of integration 
L height of a vertical wall (m) z axial coordinate (m). 

P pressure applied on the cylinder (Pa) 
p. atmospheric pressure (surroundings) 

pa) Greek symbols 
P* characteristic reference pressure 

z 
thermal diffusi~ty (m2 s- ‘) 

tP* = fW~lfi211 function defined by equation (13) 
P reduced pressure [P = (p/p*)] /2 thermal conductivity (Wm-’ K-l) 
Pe Peclet number c1 viscosity of liquid (Pas) 
Ph phase change number l dimensionless axial coordinate 
P, local pressure at r (Pa) [C = (441 
4 heat flux (W m-‘) p density (kg m - ‘) 

L 
radial coordinate (m) 
radius of the solid cylinder (R) 

s thickness of liquid layer (m) Subscripts 
T temperature (K) f fusion 
V ablation velocity of the solid cylinder 1 liquid (or fluid) 

(ms-‘) r radial 
v0 axial liquid velocity at z = s (T = Tf) S solid 

(ms-‘) W wall 

0, radial component of liquid velocity Z axial 

(m s-‘) 

asymptotic solutions (Re -+ 0) : 

v, = 3v,$l -[f 

v, = -3vo<2 1 - 2 
( ) 36 ’ 

From this hydrod~a~c treatment one obtains a 

(21 
first relationship between the ablation velocity 

where [ = z/s, ~1, and v, denote the radial and the axial 
components respectively of the velocity vector, v,, is 
the axial velocity of the liquid at the position z = s or 
[= 1. 

Owing to con~nu~ty of the mass ffux at the melting 
interface, p,v = p,vo, where u is the observed rate of 
ablation. 

From these equations one can calculate the radial 
distribution of pressure : 

Pr =Po+3wo~~l-(rlw] (3) 

and the force acting on the solid cylinders in axial 
direction (nR2p), where p (without subscript) denotes 

TThe details of the calculations are to be found in the FIG. 1, Ablative melting of a solid cylinder pressed against a 
Appendix A. heated surface. 
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u = (p,/p&,, the pressure applied on the cylinder p, 
the cylinder radius R, the liquid viscosity p, and the 
thickness s of the liquid layer: 

2 ps3 
no =3-a 

The thickness s, however, in turn depends on v. as 
can be seen from the energy balance around the solid 
cylinder : 

4(m) = fJoP,w,(~r)-~s(~J (6) 

in combination with a first approximation for the heat 

(7) 

leading to 
with 

h _ 

( 

2 A’P,PAH 114 

* 3 p,R2(T,,r-Tf) . (11) 

In Nusselt’s formula p is replaced by gp,L, R by L, 
and the numerical constant (2/3) is slightly different 
due to geometrical reasons. 

In the case at hand it is not necessary, however, to 
use the somewhat crude approximation equation (7) 
for the heat flux at z = s, which neglects the fact, that 
there is a convective flow of energy in axial direction. 

With equation (2) for the axial velocity, the energy 
equation can be solved (see Appendix B) to give 

Tw - T(C) 9(L Z-9 =- 
Tw-T, 40, p4’ (12) 

44, Pe) = 

or for the temperature T as a function of the dimen- 
sionless axial distance I in the liauid laver. 

From the energy balance equaiion (8) and Fouriers 
@a) law 

Elimination of s in equation (5) by (8) leads to 

(14) (9) 
one obtains in place of equation (8a) : 

Equation (9) states, that the velocity of ablative melt- 
ing of a cylinder is proportional to the pressure to a 

pe = exp ( - Pe/2). ph 
ti(l, Pe) 

(15) 

power of l/4, to the radius to a power of -l/2 and 
to the temperature difference to a power of 314 in this or solved for Ph and slightly rearranged: 

first approximation. 
It should be mentioned that this is analogous to the 

well known Nusselt formula for film condensation on 
a vertical surface [4], a fact that may be seen more 

Ph = Pe o’ exp [Pe *f(y)] dv 
I 

(15a) 

f(Y) = [l -Y3(2-YW. (15b) 
easily, if we introduce a heat transfer coefficient h : 

Figure 2 shows a graph of equation (15) (full line) 

h = P,~oW(TW - Td (10) together with the Nusselt type approximation equa- 

FIG. 2. Peclet number Pe vs phase change number Ph. --- Nusselt type approximation. -.-,- 
Approximation by integral method. ~ Exact analytic solution. 
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tion (8a) (broken line) and an intermediate approxi- relationship 
mation obtained earlier with an integral method, using 
a cubic parabola [in place of the rigorous solution 
(12)] for the temperature profile. 

V= [;Pe3(Ph)P]“4 (21) 

It may be noticed, that the Nusselt type approxi- 
mation should not be used except for very low values 

where Ph = ( TW - Tr)CpJAH and the function Pe(Ph) 

of the phase change number Ph. 
is given by equation (15). To avoid the somewhat 

In place of the approximate equation (9) we can 
tedious numerical integration [equations (15a, b)], the 

now give the full solution : 
function Pe(Ph) can be found from the simple 
approximation 

1 114 

. (16) 

The only difference to equation (9) being that the which fits the exact solution very well in the range 
phase change number (or the temperature difference) 0 < Ph < 5 as may be seen by comparison with Fig. 
is replaced by the function Pe(Ph) as given by equa- 2. By plotting V against [$Pe’P]“” one should obtain 
tion (15) (see Fig. 2). a straight line of slope one. 

It is possible to write equation (16) in dimensionless 
form. From dimensional analysis, two reference quan- 
tities may be defined : a characteristic velocity v* 

v* = al/R (17) 

and a characteristic pressure p* 

p* = p,v*/R = plaJR2, (18) 

The theoretical relationship for the rate of ablation 
as given by equations (16) or (21) together with (15) 
or (20) will be checked against some experimental 
data in the following section. 

EXPERIMENTS 

where v* is the rate of heat diffusion across a distance 
R, p* i’s the viscous drag per unit surface corre- 
sponding to a velocity gradient v*/R. Defining 
reduced variables 

A few experiments have been carried out using a 
very simple set up as shown schematically in Fig. 3. 
A hexagonal hollow cylindrical piece of brass has been 
used to serve as the heated wall. Using a tubular 
nozzle, a small acetylene-oxygen flame was directed 
towards the inner surface directly adjacent to the 
upper horizontal plane of the hexagonal part. Parallel 
to this upper surface a small hole has been drilled into 
the piece, so that a chromel-alumel thermocouple 
(0.5 mm dia.) could be placed close to the surface. The 
cylinders made from ice, paraffin and beechwood were 
kept in a vertical position by a guiding tube. The 
pressure was varied by fixing different weights to the 

V=p,v=P,R.V 
p,v* PIal 

and 

(19) 

equation (16) may be rewritten as a “universal” 

rod 

guide 

(22) 

/ 

flomc 

------_ Thermocouple (# Q5) 

---CT 0 0 

FIG. 

30 
i 

3. The experimental set-up (all dimensions in mm). 
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lo-‘1 
01 1 10) 

FIG. 4. Ablative melting velocity 1: vs pressure applied on the cylinder p with the wall temperature Tw as 
parameter: a comparison between theoretical straight lines and experimental points. Ice cylinders. 

upper ends of the cylinders. The velocity of ablation 
was measured using two marks on the cylinder at a 
certain known distance with the fixed guiding tube as 
a frame of reference and a stopwatch to determine the 
time. 

The data obtained are plotted on Figs. 4-6 as 
ablation velocity v vs pressure p with the measured 
wall temperature T, (about 1.3 mm below the upper 

t Due to the axial convection the average temperature 
must be in the range Tf < T,, < l (T,+ T,), therefore we 
used the physical properties at Tr for the sake of simplicity. 

t 
Y (m.5’) 

surface) as a parameter. The lines represent the pre- 
dictions from equations (15) and (16) using the physi- 
cal properties at TJ as given in Table 1. Since the 
physical properties of the mixture of liquid, gaseous 
and solid products forming the fluid layer in the case 
of wood under flash pyrolysis conditions are not 
known, the comparison for wood in Fig. 6 is of a more 
qualitative nature. The factor containing the physical 
properties in equation (16) has been fitted to the ex- 
perimental results. Nevertheless the variation of v with 
both the pressure p and the temperature difference 
(T,-- TJ, taking a “temperature of fusion” of wood 

673K 

573K 

348K 

I I I 

Cl1 1 10) 

FIG. 5. Ablative melting velocity u vs pressure applied on the cylinder p with the wall temperature Tw 
as parameter : a comparison between theoretical straight lines and experimental points. Paraffin cylinders. 
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(mx’) 

973K 

903K 

073K 

823K 

x T, =973K 
Expenmentd 1 o Tw-923K 
mdts )aTw*.873K 

p (lo” pd) 
lo-‘I I 

1 10 

FIG. 6. Ablation velocity u vs pressure p with wall temperature T, as parameter. Flash pyrolysis of 
beechwood. 

[2] of Tr = 739 K, is very well represented by equa- peratures at the surface must have been considerably 
tions (15) and (16) using one single constant for the lower than those measured about 1.3 mm below the 
term containing the physical properties : surface. The fact that there is a constant relative devi- 

ation between the measured and the calculated values 
I/4 

ms-i (16a) 
confnms that an additional thermal resistance might 
well be the reason for it. 

with PO = lo5 Pa and Pe(Ph) from equation (15). The 
fitted constant 1.55 x 1O-3 associated with estimated 
values for p,Cp, and c(, (Table 1) allows to calculate 
pi = 72.5 x 1O-3 Pa s which seems a quite reasonable 
value for the viscosity of a liquid at a melting point 
of 739 K. 

In the case of ice, where the physical properties 
are well known, the measured velocities of ablative 
melting are about 25% lower than those predicted 
from equations (15) and (16). This may be better seen 
from Fig. 7, where the data from Fig. 4 have been 
plotted as ~/(p/p~)‘/~ vs Ph or the temperature differ- 
ence. Due to the relatively high heat fluxes the tem- 

In order to check, whether the influence of the geo- 
metrical parameter R (the radius of the cylinder) is 
correctly predicted by equation (16), two series of runs 
with cylinders of paraffin with 2R = 6 mm and 2R = 
4 mm have been carried out at the same wall 
temperature Tw = 348 K. The results are given in 
Table 2. 

It may be seen that the ratio of the average abla- 
tion velocities for the 4 mm cylinders to the 6 mm 
cylinders comes very close to the value predicted 
from equation (16) (J6/4 N 1.22). 

Finally all the data have been replotted according 
to the “universal” dimensionless relationship (21) in 
Fig. 8. 

Table 1. Physical properties used for the calculations 

Tf TCO P. PI 
(K) (kg m-V (ti kg- ’ K”\ (kJ?$‘) @WC 3t PI % 

(K) (Pa s) (m2 s-‘) 

Ice (H,O) 273 268 917 1000 2.0 4.2 333.5 81.78 1.792x lo-’ 1.333 x 1O-7 
Paraffin 328 293 890 780 1.9 2.7 147 79.07 4.3 x 1O-3 0.712 x lo-’ 
Beechwood “739” 293 720 500’ 2.8 3.6511 40 411.51 72.5 x lo-)$ 0.3 x 1O-7]j 

t AH = AH,-(T,)+ C&T,- T,). 
$ The moisture content of beechwood was determined to be X = 0.0953 (based on dry mass), therefore AH was calculated 

as : 

AH N [40+2.8x446+0.0953 (2500+2.0x446] = [1288.8+212.5] = 1501.3 kJ kg-‘. 
5 Fitted value. 
I/ Estimated value [3] (the choice of these values is not very sensitive on the results for wood). 
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Table 2. Influence of diameter (2R) on velocity (0). Data for partin Tf = 328 K and T = 293 K 
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T,,, = 348 K p (1O-5 Pa) 0.56 0.93 1.25 1.49 2.03 3.47 6.22 7.19 
2R=6x10-3m u x 10’ (m s-l) 0.95 1.05 1.10 1.20 1.20 1.43 1.56 1.76 

u/p]‘4 x 1 o3 1.098 1.069 1.040 1.086 1.005 1.048 Q.!B.8 1.075 
(u/$‘~) average 1.05 x lo-3(+4.6%, -5.9%) 

T, = 348 K 
2R=4x10m3m 

p(10-5Pa) 
u x 10’ (m s-l) 
u/p”4 x 103 
(u/JW) average 

0.73 1.30 2.09 2.81 3.36 4.57 7.81 14.0 16.2 
1.25 1.33 1.46 1.54 1.67 1.89 2.11 2.45 2.76 
1.352 1.246 1.214 l&B 1.233 1.293 1.262 1.267 1.376 

1.27x 10-3(+8.3%/ -6.4%) 

h2 cl5 I 2- 

FIG. 7. Ablative melting velocity as a function of temperature 
difference (or phase change number) for ice cylinder 

(pO = lo5 Pa). 

As already shown in the previous figures the agree- 
ment between theory and the results of all the exper- 
iments is fairly good. The possible reasons for the 
somewhat larger deviations for the data with ice have 
been discussed already in connection with Figs. 4 
and 7. 

CONCLUSIONS 

A creeping flow solution of the Navier-Stokes and 
the energy equations was obtained for ablative melt- 
ing of a cylinder perpendicularly pressed against a 

heated surface with a constant force. From this 
explicit analytic solution, which is analogous, in the 
limit of small temperature differences, to the well 
known Nusselt-formula for timwise condensation of 
vapour on a vertical surface, the ablation velocity is 
found to be proportional to the fourth root of the 
pressure applied and inversely proportional to the 
square root of the diameter of the cylinder. For small 
temperature differences-wall temperature minus 
temperature of fusion-the ablation velocity is pro- 
portional to the temperature difference to a power of 
3/4. The results of some simple experiments with ice 
and paraffin as solids confirmed the theoretical pre- 
dictions. Experiments with cylinders of beechwood 
under flash pyrolysis conditions gave the same 
relationships between ablation velocity, temperature 
and pressure. At last, a universal relationship is pro- 
posed to correlate dimensionless values of ablation 
rate and applied pressure. 

Note added in proof 
Recently Saito et al. have published two reports about an 

experimental [5] and a numerical [6] study “on the contact 

o:T~.573K.d.7.lU’m 

A : 1~. 346K , d-6.10; 

x: T.. 398K.d.6.D’m 

O:lw- 373K.d.6.10’m 

. : t*. 346K .d. 6.10Am 

.: T,,- 3CW.d~6.llSb 

.:T*=396K.d.4.lO-‘m 

+: h- 34M.d.4 lC?m 

FIG. 8. “Universal” dimensionless correlation of the whole set of experimental results. 
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heat transfer with melting”. They used cylinders of ice and 
of octadecane (with 50 and 100 mm diameter) pressed against 
an electrically heated plate 151. In their second report [6] they 
solved the momentum and energy equations (neglecting the 
inertia forces as we did in our analysis) by a numerical 
(finite-difference) method. They presented their results as a 
nondimensional heat flux q* = q,=O,R/(lLAT) in terms of a 
dimensionless pressurepR ‘/PLY and a Stefan number Sle. The 
heat flux at the heated plate exceeds the flux at the phase 
change boundary by a factor e”” [as may be seen from our 
equations (12)- (15)]. 

With the dimensionless pressure corresponding exactly to 
our P = pR’/pcc and the Stefan number being equal to our 
Ph one can easily obtain q* from our equations (21), (22) for 
V(Pe, P) and Pe(Ph) as: 

q* = epc.i2 V/Ph, (23) 

For low values of Ph (or Ste < 0.1) the authors obtained a 
formula from a least square fit of their numerical results 
which can be written (in our notation) as 

q* = 0.94P”” P/Tc”“~ (Ph < 0.1). 

From our analytical solution one obtains (with Pe -+ Ph for 
small values of Ph) an asymptotic relationship: 

With (2/3)‘:3 = 0.9036, i.e. 4% lower than the numerical 
constant found for 10m3 < Ph < IO- ’ by Saito el al., these 
are in excellent agreement with each other. Values calculated 
from the more general equation (23) with (21), (22) were 
found to agree almost perfectly in the whole range of 
lo- 3 < Ph < 2 presented in graphical form in Fig. 10 of ref. 
[6]. As the experiments from ref. [5] show good agreement 
with the numerical results of ref. [6] they do so with our 
analytic solution too. It is not quite clear, however, why the 
authors in their numerical study found a slight deformation 
of the phase change boundary, with a larger thickness of the 
liquid layer at the center, for the highest Stefan numbers 
investigated (see Fig. 9 in [h]). As far as we know there is 
no experimental evidence for such a deformation and our 
analytic solution with the temperature being a function of z 
only seems to be in good agreement with both experimental 
and numerical results. 
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APPENDIX A 

Hydrodynamic solution 
For steady state and constant physical properties the con- 

servation equations for mass and momentum may be written 
as: 

(Al) 

(Re-,0) 

-~+~[;;(t$)+$]=O. (A3) 

With the boundary conditions : 

u,(z = s) = -“g = -(p,/p,)u (A4) 

l&(2 = s) = 0 (A5) 

u,(z = 0) = 0 (A6) 

u,(z = 0) = 0. (A7) 

The mass balance around the liquid cylinder of height s and 
radius r gives : 

or = r*v,/(2*s). (As) 

We are therefore trying to find a solution of the form 

0, = r-f(z) (A9) 

“z = g(z). (AlO) 

From (A9) and (Al) one obtains : 

; ; (ru,) = - $ = 2f(z) = -g’(z), (Al 1) 

which makes the first terms in brackets in equations (A2) 
and (A3) equal to zero : 

- 2 + jirf”(z) = 0 (~412) 

- g - j42f’(z) = 0. (A13) 

With 

a*p azp 
araz azar 

the function f(z) has to fulfil the condition 

f”‘(z) = 0 

leading to a parabolic velocity profile : 

Z Z 
f(z) = 3(v,/s)- 1 - - . 

s ( > s (A14) 

(The conditions A5, A7 and A8 have been used to determine 
the constants.) From this the final solutions as given in 
equations (l)-(4) in the text are easily obtained. 
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Thermal solution 

APPENDIX B 
(B3) 

The conservation of energy may be expressed by 

dT d=T 
%z = udzz’ 

T= C,[exp[-Pe(c3 -il’)]dc+C, (84) 

(Bl) 
With the boundary conditions : 

(Tis a function of z only) with v, from equation (2), equation 
(B 1) can be solved by separation of variables : 

T(c = 0) = Tw (B5) 

T(c = 1) = Tf, (W 

d2T/dc2 
~ = -Pe(3[2-2{3) (B2) 

then the solution given as equation (12) in the text is 
dtidi obtained. 

FUSION EN REGIME D’ABLATION D’UN CYLINDRE SOLIDE APPLIQUE 
PERPENDICULAIREMENT SUR UNE PAR01 CHAUDE 

R&m&Cet article prksente une Etude thkorique et experimentale sur la fusion en r&me d’ablation d’un 
cylindre appliquk sous une certaine pression sur une surface tie chauffke. On propose une solution 
analytique pour le calcul de la vitesse d’ablation en fonction de la diffkrence de temperature (tempkrature 
de la surface, temp&ature de fusion), de la pression appliqube, de la g&om&ie et des propribt& physiques 
du solide et du liquide. Les rbsultats d’exp&iences effect&es avec des baguettes de solide en fusion &lace, 
par&ne) et avec des baguettes de bois dans des conditions de pyrolyse &lair montrent un bon accord 
avec les prtvisions de l%tude thborique apportant une confirmation de la thborie du “modtle de fusion” 

relatif g la pyrolyse &lair du bois en rtgime d’ablation. 

ABSCHMELZEN EINES FESTEN ZYLINDERS, DER SENKRECHT GEGEN EINE 
BEHEIZTE WAND GEPRESST WIRD 

Zusammenfassung-Es wird iiber eine analytische und experimentelle Untersuchung berichtet zum 
Abschmelzen eines festen Zylinders, der gegen eine ruhende beheizte Wand gepresst wird. Eine ge- 
schlossene analytische Liisung fiir die Abschwelzgeschwindigkeit wurde gefunden in Abhgngigheit der 
Temperaturdifferenz und des Anpressdruches sowie der geometrischen und stofflichen Eigenschaften des 
Feststoffes und der Schmelze. Daten aus einer begrenzten Zahl relativ einfacher Versuche mit 
Stgben aus schmelzenden Feststoffen (Eis, Paraffin) und mit HolzstPben im Bereich der schnellen 
(“Flash”) Pyrolyse (unter Juertgas) zeigen eine brauchbare iibereinstimmung mit den Voraussagen der 

Theorie und bestitigen damit das “Schmelz-Modell” der schnellen Pyrolyse von Holz. 

AIXUIUMOHHOE HJIABJIEHME TBEPAOTEJIbHOrO ~MJIHHAPA, IIPMXATOTO K 
HArPETOR CTEHKE HOA IIPXMMM YrJIOM 

AHHoTaqHn-AHanMTrtreK~ Pi 3KCIICpHMeHTaJTbHO HCCnCnOBaHO a6nnu&ioHHoe IInaBneHAe TBCpl,OTe.!Ib- 

HOFO UWIHHApa,ITpWKaTOrO K CTaWOHapHO HarpeBaeMOti IIOl3epXHOCTt4 IIOn IlpSIMbIM yrnOM.nOny'IeHO 

aHankiTuqecKoe perueHtie n RBHOM wine any c~opocTw pa3pymeHq onpenenaetdoti vepe3 pa3HocTb 

TeMnepaTyp A npkinaraeMoenaBnetwie,a TaKme reoMeTpwIecKkie a&i3w1ecKaeceoRcTea Tnepnoro Tena 

II XGinKOCTR. Pe3ynbTaTb1, IlOny'IeHHbIe 83 OrpaHWIeHHOrO 'IIWna L,OBOnbHO rpy6brx 3KCIIepHMeHTOB, 

IlpOBeneHHbIX CO CTepxHRMA I43 IlnaBlllLlliXCR TBepnbIX Ten(ne&iTapa+HH)H DepeBRHHbIMH CTep?K"SMA 

IIpki yCnOBN5IX nkipOJIH3a,IIOKa3bIBaIOT XOpOIIlee COOTBeTCTBWe C PaC'IeTHbIMll LlaHHbIMEi,nOnTBCpmnaR 

TaKAMo6pa30ML'MOAenbnnaBneHHx~nHponH3anepeBa BpextrcMe a6nnunw. 


